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Abstract
We present a detailed theoretical investigation of the radiation induced
giant magnetoresistance oscillations recently discovered in high-mobility two-
dimensional electron gas. Electron interactions with impurities, and transverse
and longitudinal acoustic phonons in GaAs-based heterosystems are considered
simultaneously. Multiphoton-assisted impurity scatterings are shown to be the
primary origin of the resistance oscillation. Based on the balance-equation
theory developed for magnetotransport in Faraday geometry, we are able not
only to reproduce the observed period, phase and the negative resistivity of
the main oscillations, but also to predict the secondary peak/valley structures
relating to two-photon and three-photon processes. The dependence of the
magnetoresistance oscillation on microwave intensity, the role of dc bias current
and the effect of elevated electron temperature are discussed. Furthermore, we
propose that the temperature dependence of the resistance oscillation stems
from the growth of the Landau level broadening due to the enhancement
of acoustic phonon scattering with increasing lattice temperature. The
calculated temperature variation of the oscillation agrees well with experimental
observations.

1. Introduction

Tremendous interest in magneto-transport in two-dimensional electron systems (2DESs) has
recently been revived since the experimental discovery of giant oscillations of the longitudinal
resistance as a function of the magnetic field in high mobility two-dimensional (2D) electron gas
(EG) subjected to microwave radiation [1–3], particularly following the recent observations
of ‘zero-resistance’ states in very clean samples by two independent groups [4–7]. These
radiation-induced oscillations of the longitudinal magnetoresistivity Rxx are periodical in
inverse magnetic field 1/B with the period determined by the radiation frequency ω rather
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than by the electron density Ne [8]. The observed Rxx oscillations exhibit a smooth magnetic-
field variation with the resistivity maxima at ω/ωc = j − δ− and minima at ω/ωc = j + δ+ (ωc

is the cyclotron frequency, j = 1, 2, 3, . . .) having positive δ± ranging around 0.1–0.25 [4, 7].
The resistivity minimum goes downward with increasing sample mobility and/or increasing
radiation intensity until a vanishing resistance state shows up, while the Hall resistivity keeps
the classical form Rxy = B/eNe with no sign of quantum Hall plateau over the whole magnetic
field range exhibiting Rxx oscillation. Later independent experiments [9, 10] confirmed these
results and the corresponding zero-conductance states were also observed in the Corbino
samples [11].

To explore the origin of these peculiar ‘zero-resistance’ states, different mechanisms have
been suggested [12–19]. As is shown by Andreev et al [13], a negative linear conductance
implies that the zero current state is intrinsically unstable: the system spontaneously develops
a non-vanishing local current density which is determined by the condition that the component
of the electric field parallel to the local current vanishes. Thus the appearance of negative
longitudinal resistivity or conductivity in a uniform model suffices to explain the observed
vanishing resistance. The possibility of absolute negative photoconductance in a 2DES
subject to a perpendicular magnetic field was first explored 30 years ago by Ryzhii [20, 21].
Experimentally Keay et al [22] reported the observation of absolute negative conductance
in sequential resonant tunnelling superlattices driven by intense terahertz radiation. Recent
works [12, 14, 15] indicated that the periodical structure of the density of states (DOS) of the
2DEG in a magnetic field and the photon-excited electron scatterings by impurities are the
main origin of the magnetoresistance oscillations. Durst et al [12] proposed a microscopic
analysis for the conductivity assuming a δ-correlated disorder and a simple form of the 2D
electron self-energy oscillatory with the magnetic field, obtaining the correct period, phase
and the possible negative resistivity. Shi and Xie [15] gave a similar result using the Tien
and Gorden current formula [23] for photon-assisted coherent tunnelling. A more quantitative
theoretical description was reported recently using a balance equation approach developed
for radiation-induced magnetotransport in Faraday geometry [24], not only reproducing the
correct period, phase and the negative resistivity of the main oscillations, but also predicting the
secondary peaks and additional maxima and minima observed in the experiment [5, 7, 9], and
identifying them as arising from double- and triple-photon processes. A quantum Boltzmann
equation approach based on a self-consistent Born approximation for large filling factors has
also been presented very recently, taking account of the elastic (impurity) scattering as the
major mechanism for radiation-induced magnetoresistance oscillation [25]. In addition to the
photon-assisted impurity scattering referred to above as the mechanism of the absolute negative
conductivity (ANC), other possible mechanisms were also explored in the literature. Ryzhii
et al proposed that acoustic phonon scattering [26, 27] and heating of electrons [28] could also
serve as the mechanisms of ANC in 2DESs, and made a further attempt to connect them with
experiments [29].

One of the most important and interesting features of this phenomenon is its
sensitive temperature dependence. The ‘zero-resistance’ states and radiation-induced
magnetoresistance oscillations show up strongly only at low temperatures typically around
T = 1 K or lower. At fixed microwave power with increasing temperature, not only the zero-
resistance regions become narrower and eventually disappear, the whole oscillatory structure
(peaks and valleys) diminish as well. At temperature T � 4–5 K, the oscillatory structure
disappears completely and the resistivity Rxx versus magnetic field becomes essentially
structureless [4, 5]. The temperature variation of the resistivity at deepest minima exhibits
approximate activated-type behaviour Rxx ∝ exp(−T0/T ). However, the activation energies
T0 observed by both groups are very high: up to 10 and 20 K at j = 1 minimum [4, 5]. These
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values are much higher than the microwave photon energy (ω ∼ 3–5 K) and Landau-level
spacing (ωc � ω). Furthermore, different T0 values observed by the two groups indicate
that the disappearing speed of the oscillatory structure with increasing temperature is sample
dependent [4, 5]. To my knowledge, there has been no theoretical attempt to explain this
temperature dependence, except that a conjecture of the formation of an energy gap around
the Fermi surface is suggested under microwave irradiation around the resistance minima [4].

The recently constructed balance-equation model [24, 30], which provides a quantitative
and tractable approach to radiation-induced magnetotransport in Faraday geometry, enables us
not only to analyse the magnetoresistance oscillation, its dependence on the radiation intensity,
but also to deal with its temperature variation in a comprehensive way. We suggest that the
temperature suppression of the magnetoresistance oscillation in these high-mobility 2DESs
comes mainly from the growth of the Landau level broadening due to the rapid enhancement
of acoustic phonon scatterings with increasing temperature in this low temperature range.

In this paper we will carry out a detailed theoretical investigation on the different aspects
of radiation-induced magnetoresistance oscillation. The paper is organized as follows. For
convenience and completeness we present the general theoretical model and formulation in
section 2. As a typical example we analyse GaAs-based systems for which the relevant material
parameters are discussed in section 3. Section 4 concentrates on the transport properties of
GaAs-based heterosystems at lattice temperature T = 1 K. We will give a detailed discussion
on the impurity and acoustic phonon scattering related linear and nonlinear magnetoresistance
induced by the irradiation of 0.1 THz microwaves of different intensities, and the effect of
elevated electron temperature. Section 5 is devoted to the analysis of the lattice-temperature
dependence of the magnetoresistance oscillation. Finally, a brief summary is given in section 6.

2. Formulation

2.1. Balance equations in crossed electric and magnetic fields

The experiments allow us to assume the 2DEG being in extended states over the magnetic
field range relevant to this phenomenon. For a general treatment, we consider Ne electrons
in a unit area of a quasi-2D system in the x–y plane with a confining potential V (z) in the
z-direction. These electrons, besides interacting with each other, are scattered by random
impurities/disorders and by phonons in the lattice. To include possible elliptically polarized
microwave illumination we assume that a uniform dc electric field E0 and a high-frequency
(HF) ac field of frequency ω,

Et ≡ Es sin(ωt) + Ec cos(ωt), (1)

are applied in the x–y plane, together with a magnetic field B = (0, 0, B) along the z direction.
In terms of the 2D centre-of-mass momentum and coordinate of the electron system [33, 31, 32],
which are defined as P ≡ ∑

j p j‖ and R ≡ N−1
e

∑
j r j‖, with p j‖ ≡ (p j x, p j y) and

r j‖ ≡ (x j , y j) being the momentum and coordinate of the j th electron in the 2D plane,
and the relative electron momentum and coordinate p′

j‖ ≡ p j‖ − P/Ne and r′
j‖ ≡ r j‖ − R,

the Hamiltonian of the system can be written as the sum of a centre-of-mass part Hcm and a
relative electron part Her (A(r) is the vector potential of the B field),

Hcm = 1

2Nem
(P − NeeA(R))2 − Nee(E0 + Et) · R, (2)

Her =
∑

j

[
1

2m

(
p′

j‖ − eA(r′
j‖)

)2
+

p2
j z

2mz
+ V (z j )

]
+

∑
i< j

Vc(r′
i‖ − r′

j‖, zi , z j ), (3)
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together with electron–impurity and electron–phonon interactions Hei and Hep. Here m and
mz are, respectively, the electron effective mass parallel and perpendicular to the plane, and
Vc stands for the electron–electron Coulomb interaction. It should be noted that the uniform
electric field (dc and ac) appears only in Hcm, and that Her is just the Hamiltonian of a quasi-2D
system subjected to a magnetic field. The coupling between the centre-of-mass and the relative
electrons exists via the electron–impurity and electron–phonon interactions. Our treatment
starts with the Heisenberg operator equations for the rates of changes of the centre-of-mass
velocity V̇ = −i[V, H ] + ∂V/∂ t , with V = −i[R, H ], and of the relative electron energy
Ḣer = −i[Her, H ], and proceeds with the determination of their statistical averages.

As proposed in [31], the centre-of-mass coordinate R and velocity V can be treated
classically, i.e. as the time-dependent expectation values of the centre-of-mass coordinate and
velocity, R(t) and V(t), such that R(t)−R(t ′) = ∫ t

t ′ V(s) ds. We are concerned with the steady
transport state under an irradiation of single frequency and focus on the photon-induced dc
resistivity and the energy absorption of the HF field. These quantities are directly related to the
time-averaged and/or base-frequency oscillating components of the centre-of-mass velocity.
Although higher harmonics of the current may affect the dc and lower harmonic terms of the
drift velocity through entering the damping force and energy exchange rates in the resulting
equations, in an ordinary semiconductor the power of even the third harmonic current is rather
weak as compared to the fundamental. For the HF field intensity in the experiments, the
effect of higher harmonic current is safely negligible. Hence, it suffices to assume that the
centre-of-mass velocity, i.e. the electron drift velocity, consists of a dc part v0 and a stationary
time-dependent part v(t) of the form

V(t) = v0 + v1 cos(ωt) + v2 sin(ωt). (4)

With this, the exponential factor in the operator equations can be expanded in terms of Bessel
functions Jn(x):

e−iq·∫ t
t ′ V(s)ds =

∞∑
n=−∞

J 2
n (ξ)ei(q·v0−nω)(t−t ′) +

∑
m �=0

eim(ωt−ϕ)
∞∑

n=−∞
Jn(ξ)Jn−m(ξ)ei(q·v0−nω)(t−t ′).

Here the argument in the Bessel functions

ξ ≡ 1

ω

[
(q‖ · v1)

2 + (q‖ · v2)
2
] 1

2 (5)

and tan ϕ = (q · v2)/(q · v1). On the other hand, for 2D systems having electron sheet density
of the order of 1015 m−2, the intra-band and inter-band Coulomb interactions are sufficiently
strong that it is adequate to describe the relative-electron transport state using a single electron
temperature Te. Apart from this, the electron–electron interaction is treated only in a mean-field
level under random phase approximation (RPA) [31, 32]. For the determination of the unknown
parameters v0, v1, v2 and Te, it suffices to know the damping force up to the base frequency
oscillating term F(t) = F0 + Fs sin(ωt) + Fc cos(ωt), and the energy-related quantities up to
the time-average term. We finally obtain the force and energy balance equations:

0 = NeeE0 + Nee(v0 × B) + F0, (6)

v1 = eEs

mω
+

Fs

Nemω
− e

mω
(v2 × B), (7)

−v2 = eEc

mω
+

Fc

Nemω
− e

mω
(v1 × B), (8)

NeeE0 · v0 + Sp − W = 0. (9)
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Here

F0 =
∑

q‖

∣∣U(q‖)
∣∣2

∞∑
n=−∞

q‖ J 2
n (ξ)�2(q‖, ω0 − nω)

+
∑

q

|M(q)|2
∞∑

n=−∞
q‖ J 2

n (ξ)�2(q, ω0 + �q − nω) (10)

is the time-averaged damping force, Sp is the time-averaged rate of the electron energy-gain
from the HF field, 1

2 Nee(Es · v2 + Ec · v1), which can be written in a form obtained from
the right-hand side of equation (10) by replacing the q‖ factor with nω, and W is the time-
averaged rate of the electron energy-loss due to coupling with phonons, whose expression
can be obtained from the second term on the right hand side of equation (10) by replacing
the q‖ factor with �q, the energy of a wavevector-q phonon. The oscillating frictional force
amplitudes Fs ≡ F22 − F11 and Fc ≡ F21 + F12 are given by (µ = 1, 2)

F1µ = −
∑

q‖
q‖ηµ|U(q‖)|2

∞∑
n=−∞

[
J 2

n (ξ)
]′

�1(q‖, ω0 − nω)

−
∑

q

q‖ηµ|M(q)|2
∞∑

n=−∞

[
J 2

n (ξ)
]′

�1(q, ω0 + �q − nω), (11)

F2µ =
∑

q‖

q‖
ηµ

ξ
|U(q‖)|2

∞∑
n=−∞

2n J 2
n (ξ)�2(q‖, ω0 − nω)

+
∑

q

q‖
ηµ

ξ
|M(q)|2

∞∑
n=−∞

2n J 2
n (ξ)�2(q, ω0 + �q − nω). (12)

In these expressions, ηµ ≡ q‖ · vµ/ωξ , ω0 ≡ q‖ · v0, U(q‖) and M(q) stand
for effective impurity and phonon scattering potentials, �2(q‖,�) and �2(q,�) =
2�2(q‖,�)[n(�q/T ) − n(�/Te)] (with n(x) ≡ 1/(ex − 1)) are the imaginary parts of the
electron density correlation function and electron–phonon correlation function in the presence
of the magnetic field. �1(q‖,�) and �1(q,�) are the real parts of these two correlation
functions.

The HF field enters through the argument ξ of the Bessel functions in F0, Fµν , W and
Sp. Compared with that without the HF field (n = 0 term only) [34], we see that in an
electron gas having impurity and/or phonon scattering (otherwise homogeneous), a HF field of
frequency ω opens additional channels for electron transition: an electron in a state can absorb
or emit one or several photons and be scattered to a different state with the help of impurities
and/or phonons. The sum over |n| � 1 represents contributions of single and multiple photon
processes of frequency-ω photons. These photon-assisted scatterings help to transfer energy
from the HF field to the electron system (Sp) and give rise to an additional damping force on
the moving electrons.

Equations (6)–(9) form a closed set of equations for the determination of parameters v0,
v1, v2 and Te when E0, Ec and Es are given in a 2D system subjected to a magnetic field B at
temperature T . Thus they provide a comprehensive and quantitative description of transport
and optical properties of magnetically biased quasi-2D semiconductors subjected to a dc bias
and a HF radiation field in Faraday geometry.

Note that v1 and v2 always exhibit cyclotron resonance in the range ω ∼ ωc, as can be
seen from equations (7) and (8) rewritten in the form

v1 = ω2

(ω2 − ω2
c )

{
e

mω

[
Es +

e

mω
(Ec × B)

]
+

1

Nemω

[
Fs +

e

mω
(Fc × B)

]}
, (13)
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v2 = ω2

(ω2
c − ω2)

{
e

mω

[
Ec − e

mω
(Es × B)

]
+

1

Nemω

[
Fc − e

mω
(Fs × B)

]}
. (14)

Therefore, the argument ξ may be significantly different from that of the corresponding Bessel
functions in the case without a magnetic field or with a magnetic field in Voigt configuration,
where the electron motion is not affected by the magnetic field [34]. On the other hand, impurity
and phonon scatterings can affect ξ through the damping forces Fs and Fc. Equations (13)
and (14), when neglecting the damping forces Fs = 0 = Fc, yield a Bessel-function argument
ξ equivalent to that used in the early literature [35, 36]. The approximation of neglecting
damping forces is valid only in the weak scattering limit and away from cyclotroresonance.
Depending on v1 and v2, the damping forces Fs and Fc in equations (13) and (14) are important
not only in the general scattering case over the whole magnetic-field range but also in the weak
scattering case in the vicinity of cyclotron resonance in that they remove the divergence and
yield finite oscillation velocities v1 and v2 at ω = ωc.

2.2. Longitudinal and transverse resistivities

The nonlinear longitudinal and transverse resistivities in the presence of a high-frequency
field are easily obtained from equation (6) by choosing v0, i.e. the dc current, to be in the
x direction, v0 = (v0x , 0, 0). In this paper we consider the case of a linearly polarized HF
field Et = Es sin(ωt) with Es = (Es, 0, 0) parallel to the dc current direction. Then the
damping force F0, as given by equation (10), is also along the x direction, F0 = (F0, 0, 0),
and equation (6) immediately yields

Rxx ≡ E0x

Neev0x
= − F0

N2
e e2v0x

, (15)

Ryx ≡ E0y

Neev0x
= B

Nee
. (16)

The linear longitudinal resistivity is the weak dc current limit (v0x → 0) of (15):

Rxx = −
∑
q‖

q2
x

|U(q‖)|2
N2

e e2

∞∑
n=−∞

J 2
n (ξ)

∂�2

∂ �

∣∣∣∣
�=nω

−
∑

q

q2
x

|M(q)|2
N2

e e2

∞∑
n=−∞

J 2
n (ξ)

∂�2

∂ �

∣∣∣∣
�=�q+nω

.

(17)

We see that the longitudinal resistivity Rxx is strongly affected by the irradiation through
photon-assisted impurity and phonon scatterings. On the other hand, the transverse resistivity
Rxy remains the classical form, without change in the presence of HF radiation as long as the
HF and the dc currents are in the same direction. When the polarization of the HF electric field
deviates from the dc current direction, however, Rxy can also be affected by the radiation.

Note that although according to equations (10), (15) and (17), the linear and nonlinear
longitudinal magnetoresistivity Rxx can be formally written as the sum of contributions from
various individual scattering mechanisms, all the scattering mechanisms have to be taken into
account simultaneously in solving the momentum- and energy-balance equations (7)–(9) for
v1, v2 and Te, which enter the Bessel functions and other parts in the expression of Rxx .

2.3. Landau-level broadening

In the present model the effects of interparticle Coulomb interactions are included in the
electron complex density correlation function �(q‖,�) = �1(q‖,�) + i�2(q‖,�), which, in
the random phase approximation, can be expressed as

�(q‖,�) = �0(q‖,�)

ε(q‖,�)
, (18)
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where

ε(q‖,�) ≡ 1 − V (q‖)�0(q‖,�) (19)

is the complex dynamical dielectric function,

V (q‖) = e2

2ε0κq‖
H (q‖) (20)

is the effective Coulomb potential with κ the dielectric constant of the material and H (q‖) a 2D
wavefunction-related overlapping integration [32], �0(q‖,�) = �01(q‖,�) + i�02(q‖,�) is
the complex density correlation function of the independent electron system in the presence of
the magnetic field. With this dynamically screened density correlation function the collective
plasma modes of the 2DESs are incorporated. Disregarding these collective modes one can
just use a static screening ε(q‖, 0) instead.

The �02(q‖,�) function of a 2D system in a magnetic field can be written in terms of the
Landau representation [33]:

�02(q‖,�) = 1

2πl2
B

∑
n,n′

Cn,n′(l2
Bq2

‖/2)�2(n, n′,�), (21)

�2(n, n′,�) = − 2

π

∫
dε [ f (ε) − f (ε + �)] Im Gn(ε + �) Im Gn′(ε), (22)

where lB = √
1/|eB| is the magnetic length,

Cn,n+l(Y ) ≡ n![(n + l)!]−1Y l e−Y [Ll
n(Y )]2 (23)

with Ll
n(Y ) the associate Laguerre polynomial, f (ε) = {exp[(ε − µ)/Te] + 1}−1 the Fermi

distribution function and Im Gn(ε) is the imaginary part of the electron Green function, or the
DOS, of the Landau level n. The real part function �01(q‖,�) and corresponding �01(q‖,�)

function can be derived from their imaginary parts via the Kramers–Kronig relation.
In principle, to obtain the Green function Im Gn(ε), a self-consistent calculation has to be

carried out from the Dyson equation for the self-energy with all the impurity, phonon and other
scatterings included. The resultant Gn is generally a complicated function of the magnetic field,
temperature and Landau-level index n, also dependent on the relative strengths of different
kinds of scatterings [37, 38]. In the present study we do not attempt a self-consistent calculation
of Gn(ε). Instead, we choose a Gaussian-type form [37] for the purpose of demonstrating the
observed oscillations (εn is the energy of the nth Landau level):

Im Gn(ε) = −
√

π

2�2
exp

[
− (ε − εn)

2

2�2

]
(24)

with a broadening width given by

� =
(

2eωcα

πmµ0(T )

)1/2

, (25)

where µ0(T ) is the linear mobility at temperature T in the absence of the magnetic field and
α > 1 is a semiempirical parameter to take account of the difference in the transport scattering
time determining the mobility µ0(T ), to which larger angle scattering contributes a heavier
weight, from the single particle lifetime, to which scattering with small or large angle equally
contributes [4, 12, 14].
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3. GaAs-based 2DESs

Similar to recent experiments, we focus our attention on two ultra high mobility two-
dimensional electron systems of GaAs/AlGaAs heterostructure with same electron sheet
density Ne = 3 × 1011 cm−2 but having linear mobility µ0(1 K) = 2.4 × 107 cm2 V−1 s−1

and µ0(1 K) = 1.46 × 107 cm2 V−1 s−1, respectively, in the absence of magnetic
field. In GaAs/AlGaAs systems, phonon modes and electron–phonon couplings are well
established [32]. We consider both transverse acoustic phonons (interacting with electrons
via piezoelectric coupling) and longitudinal acoustic phonons (interacting with electrons via
piezoelectric and deformation potential couplings). We assumed that the elastic scatterings
are due to the remote charged impurities which are located a distance s = 60 nm away from
the interface of the heterojunction in the barrier side. The impurity densities are determined
by the requirement that the electron total linear mobility equals the given value at temperature
T = 1 K. The effective impurity scattering potentials |U(q‖)|2 and electron–phonon matrix
elements |M(q)|2 as discussed earlier in [32] are used in the calculation, with full inelasticity
of electron couplings with both longitudinal and transverse phonons included. The material
and coupling parameters for the system are well defined and taken as: electron effective mass
m = 0.068 me (me is the free electron mass), transverse sound speed vst = 2.48 × 103 m s−1,
longitudinal sound speed vsl = 5.29 × 103 m s−1, acoustic deformation potential � = 8.5 eV,
piezoelectric constant e14 = 1.41 × 109 V m−1, dielectric constant κ = 12.9, material
mass density d = 5.31 g cm−3. The depletion layer charge number density is taken as
Ndep = 5 × 1010 cm−2.

In GaAs system at low temperatures µ0(T ) comes from impurity, transverse and
longitudinal acoustic phonon scatterings:

1

µ0
= 1

µ
(i)
0

+
1

µ
(pt)
0

+
1

µ
(pl)
0

. (26)

The longitudinal magnetoresistivity Rxx (equation (17)) consists of contributions from the
impurity, transverse and longitudinal acoustic phonon scatterings. In the following sections we
will carry out numerical calculations for Rxx assuming linearly polarized MW fields (Ec = 0)
with multiphoton processes included.

The microwave field intensity required for the appearance of resistivity oscillation in these
high-mobility samples is moderate. The slight electron heating induced by the irradiation in
these systems is unimportant as far as the main phenomenon is concerned. As can be seen
later, the radiation-induced magnetoresistance oscillation is not sensitive to the moderate rise
of electron temperature. Therefore, Rxx can be obtained directly from equation (17) with
Te = T . We will check the effect of the elevated electron temperature in section 4.1.3.

4. Rxx at temperature T = 1 K

4.1. Impurity-induced magnetoresistivity

4.1.1. Linear resistivity. We assume that the elastic scatterings are due to ionized remote
impurities [32]. Figure 1(a) shows the impurity-induced longitudinal resistivity Rxx versus
ω/ωc ≡ γc subjected to a microwave radiation of frequency ω/2π = 0.1 THz at four values
of amplitude: Es = 15, 30, 45 and 60 V cm−1, together with dark resistivity curve (Es = 0).
At temperature T = 1 K Shubnikov–de Haas (SdH) oscillations of period γc = 0.039 show up
strongly on the high ωc side, and then gradually decay away as 1/ωc increases. In addition to
this, all four resistivity curves exhibit clear oscillation having the main oscillation period γc = 1
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Figure 1. (a) The longitudinal linear magnetoresistivity Rxx induced by remote-impurity scattering
in a GaAs-based heterosystem subjected to crossed magnetic fields B and in-plane linearly
polarized HF fields Es sin(ωt) of frequency ω/2π = 0.1 THz with several different amplitudes
at lattice temperature T = 1 K. ωc ≡ eB/m stands for the cyclotron frequency. The other
parameters are: electron density Ne = 3.0 × 1011 cm−2, zero-magnetic-field linear dc mobility
µ0(1 K) = 2.4 × 107 cm2 V−1 s−1, and the broadening coefficient α = 12. The electron
temperature is set to be Te = T . (b) Parameters δ+ and δ− for locations of resistance maxima
and minima at several HF field amplitudes. (c) The photoresistivity Rxx − Rxx (Es = 0) at maxima
and at minima of j = 1 and 2 against the amplitude of the HF field. (d) Rxx /Rxx (Es = 0) is
shown against E2

s on logarithmic scale for j = 2, 3 and 4.

(they cross at integer points γc = 2, 3, 4, 5). The resistivity maxima locate around γc = j −δ−
and minima around γc = j + δ+ with δ± ∼ 0.14–0.26 for j = 3, 4, 5, δ± ∼ 0.11–0.22 for
j = 2, and δ± ∼ 0.03–0.07 for j = 1 (figure 1(b)). The amplitude of the oscillation
increases with increasing HF field intensity for γc > 1.5. Resistivity becomes negative
for Es = 60 V cm−1 around the minima at j = 1, 2, 3, 4 and 5, for Es = 45 V cm−1

at j = 1, 2 and 3, and for Es = 30 and 15 V cm−1 at j = 1. These main peak-valley
structures are related to single-photon (|n| = 1) processes. In the vicinity of γc = 1, where
the cyclotron resonance greatly enhances the effective amplitude of the HF field in photon-
assisted scatterings, multiphoton processes show up. The amplitudes of the j = 1 maximum
and minimum no longer monotonically change with field intensity. Furthermore, there appears
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Figure 2. Remote-impurity induced nonlinear longitudinal magnetoresistivity Rxx as defined
in equation (15) in the GaAs-based 2DEG subjected to crossed magnetic fields B and an in-
plane linearly polarized HF field Es sin(ωt) of frequency ω/2π = 0.1 THz and amplitude
Es = 60 V cm−1 under several different dc bias velocities v0 = 0, 0.008, 0.015, 0.025, 0.05 and
0.1vF , where vF = 2.4 × 105 m s−1 is the electron Fermi velocity. ωc ≡ eB/m is the cyclotron
frequency. The other parameters are the same as indicated in figure 1.

a shoulder around γc = 1.5 on the curves of Es = 15 and 30 V cm−1, and it develops into a
secondary peak in the cases of Es = 45 and 60 V cm−1. This peak-valley structure around
γc = 1.5 is related to two-photon (|n| = 2) processes. The oscillatory peak-valley structure
related to three-photon processes was demonstrated in the cases of lower microwave frequency
(ω = 60 and 40 GHz) [24].

The dependence of the resistivity at maxima and minima on the microwave intensity is
shown in figure 1(c), where we plot the calculated photoresistivity, i.e. the magnetoresistivity in
the presence of radiation, Rxx , minus the dark resistivity Rxx(Es = 0), as a function of radiation
field amplitude Es at peaks and valleys of j = 2, 3 and 4. We see that |Rxx − Rxx (Es = 0)|
grows like E2

s at lower intensity and become linearly dependent on Es at higher intensity within
the amplitude range shown. This is in agreement with experiments [4–6].

Figure 1(d) shows the positive parts of Rxx/Rxx (Es = 0) at minima of j = 2, 3 and 4 on
a logarithmic scale as functions of E2

s .

4.1.2. Nonlinear resistivity. Figure 2 shows the nonlinear longitudinal resistivity Rxx due
to remote-impurity scattering calculated directly from equation (15) for the 2DESs subject
to a 0.1 THz microwave radiation of amplitude Es = 60 V cm−1 under different dc bias
velocities v0 = 0, 0.008, 0.015, 0.025, 0.05 and 0.1 vF, where the electron Fermi velocity
vF = 2.4×105 m s−1. For the given strength of the radiation field the linear magnetoresistivity
(vanishing E0 or v0) exhibits the strongest oscillation. A finite dc bias always suppresses the
oscillation and may destroy the negative resistivity appearing at vanishing dc bias. The effect
is apparently much stronger at larger γc than at smaller γc.

4.1.3. Effect of elevated electron temperature. Upon microwave irradiation the electron
temperature can be higher than the lattice temperature. To have an idea of how the elevated
electron temperature affects the magnetoresistivity oscillation we show in figure 3 the remote-
impurity induced longitudinal resistivity Rxx of the 2DEG having electron temperatures
Te = 1, 5 or 50 K but at the same lattice temperature T = 1 K subject to a microwave
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Figure 3. The impurity-induced linear magnetoresistivity Rxx of a GaAs-based 2DES subjected
to a microwave field of amplitude Es = 60 V cm−1 and frequency ω/2π = 0.1 THz at elevated
electron temperatures. The lattice temperature is T = 1 K. The other parameters are the same as
indicated in figure 1.

irradiation of frequency ω/2π = 0.1 THz and amplitude Es = 60 kV cm−1. We see that at
Te = 5 K SdH oscillations disappear completely, but the radiation-induced oscillations remain
essentially the same. Only when the electron temperature becomes much higher, e.g. 50 K,
can the appreciable change in the resistance oscillation curve be observed. This indicates that
the radiation-induced resistivity oscillation is quite insensitive to electron temperature and we
can analyse the moderate-strength microwave induced resistivity oscillation by neglecting the
electron temperature change in the system. On the other hand, using a slightly elevated electron
temperature provides a way to separate the radiation-induced oscillation from the SdH effect.

Experiments indicated that the strongest SdH oscillations always show up on the dark
resistivity curve and with enhancing the radiation intensity the SdH oscillations weaken [4, 6].
This fact can be easily understood to be due to the rise of the electron temperature caused by the
microwave illumination: SdH oscillations are suppressed by the rising electron temperature,
while the radiation-induced Rxx oscillations remain the same as long as the lattice temperature
remains unchanged.

4.2. Acoustic-phonon-induced magnetoresistivity

Acoustic phonon scattering has recently been proposed as a mechanism of the absolute negative
resistivity leading to the vanishing resistance state [26, 27]. To check such a possibility we
show in figure 4 the linear magnetoresistivity Rxx, contributed separately by transverse acoustic
phonon scattering (a) and by longitudinal acoustic phonon scattering (b), as functions of ω/ωc

under 0.1 THz microwave illumination of different strengths. Photon-assisted acoustic-phonon
scattering itself indeed can give rise to a pronounced resistance oscillation with changing
magnetic field and Rxx at oscillation minima can go down to negative under microwave
irradiations for both transverse and longitudinal phonon scatterings. These acoustic-phonon
induced Rxx oscillations, however, exhibit quite different behaviour from that of the impurity-
induced Rxx oscillations shown in figure 1 and are also different from each other.

Note that, at temperature T = 1 K, the acoustic phonon scattering produces a part of Rxx

which is more than an order of magnitude smaller than that contributed from impurity scattering
in the system having a mobility of 2.4 × 107 cm2 V−1 s−1 at T = 1 K. Therefore, acoustic
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Figure 4. Linear magnetoresistivities Rxx induced by transverse acoustic phonons (a) and by
longitudinal acoustic phonons (b) in a GaAs-based 2DES subjected to microwave fields Es sin(ωt)
of frequency ω/2π = 0.1 THz having different amplitudes. The lattice temperature is T = 1 K and
the electron temperature Te = T . The other parameters are: electron density Ne = 3.0×1011 cm−2,
dc mobility µ0(1 K) = 2.4 × 107 cm2 V−1 s−1 and broadening coefficient α = 12.

phonon scattering essentially gives no direct contribution to the experimentally observed
resistance oscillation at this low temperature. Nevertheless, acoustic phonons play a key
role in suppressing the resistance oscillation at elevated lattice temperatures. We will discuss
this issue in section 5.

5. Effect of elevated lattice temperature

One of the most important aspects of the experimental finding on the magnetoresistance
oscillation in irradiated 2DESs is the temperature dependence of Rxx . Experiments [4, 5] found
that the ‘zero-resistance’ states and radiation-induced magnetoresistance oscillations show up
strongly only at low temperatures typically around T = 1 K or lower. At fixed microwave
power with increasing temperature, not only the zero-resistance regions become narrower and
eventually disappear, the whole oscillatory structure (peaks and valleys) diminishes as well.
At temperature T � 4–5 K, the oscillatory structure disappears completely and the resistivity
Rxx versus magnetic field becomes essentially flat [5].

Both groups analysed the temperature variation of Rxx at deepest minima using an
activated-type dependence exp(−T0/T ). The activation energies observed by them are very
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Figure 5. (a) Zero-magnetic-field linear mobility induced by transverse acoustic phonon scattering,

µ
(pt)
0 , by longitudinal acoustic phonon scattering, µ

(pl)
0 , and total mobility µ0, for the system

with µ0(1 K) = 2.4 × 107 cm2 V−1 s−1 (dots), and for the system with µ0(1 K) = 1.46 ×
107 cm2 V−1 s−1 (solid curve). (b) The ratios of Rxx (T )/Rxx (0) at maxima and at minima are
shown against 1/T on a logarithmic scale for j = 2, 3, 4 and 5. The system is that described in
figure 6 and Rxx (0) is the resistivity at T = 1 K in the absence of magnetic field.

high and different: up to 10 and 20 K at j = 1 minimum [4, 5]. The different T0 values
observed by the two groups indicate that the speed of the oscillatory structure disappearing
with temperature is sample dependent [4, 5]. To explain the temperature dependence the
formation of an energy gap around the Fermi surface in the spectrum is suggested under
microwave irradiation around the resistance minima [4].

Our explanation of the temperature dependence of the magnetoresistance oscillations
is based on the temperature variation of the Landau level broadening � as determined by
equation (25). In a GaAs-based system, when the lattice temperature increases from around
T = 1 K, the numbers of transverse and longitudinal acoustic phonons and thus the electron–
phonon scattering strengths increase rapidly. In figure 5(a) we plot the zero-magnetic-field
linear mobility µ

(pt)
0 due to transverse acoustic phonon scattering, µ

(pl)
0 due to longitudinal

phonon scattering, and the total mobility µ0 (dots) as functions of lattice temperature T for
the GaAs-based heterosystem with µ0 = 2.4 × 107 cm2 V−1 s−1 at T = 1 K. We see that
when temperature T rises from 1 to 3 K the phonon related mobilities decline by about an
order of magnitude, leading to the total mobility µ0(T ) decreasing by about a factor of 2.2
and, according to (25), � increasing by about a factor of 1.5 (assuming α unchanged). The
temperature growth of the Landau-level width due to this enhanced phonon scattering results
in the strong temperature variation of the radiation-induced magnetoresistance oscillation.
Figure 6 shows the calculated linear resistivity Rxx due to remote-impurity scattering as a
function of ω/ωc at different lattice temperatures T = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and 5.0 K
for the system of µ0(1 K) = 2.4 × 107 cm2 V−1 s−1 under a fixed microwave illumination
of frequency ω/2π = 0.1 THz and amplitude Es = 60 V cm−1. The broadening parameter
is fixed to be α = 12 for all the curves of different lattice temperatures, and the electron
temperature is taken to be equal to the lattice temperature in all the calculations in this section.
The sensitive temperature dependence of the resistance oscillation is quite obvious. The
magnitude of peaks and valleys of the oscillation diminishes straightforwardly with increasing
temperature from 1 K. At T � 5 K the oscillation structure almost disappears and Rxx exhibits
quite a flat form with changing ω/ωc for γc � 1.1.

To show the temperature variation of Rxx , we plot in figure 5(b) the values of Rxx at peaks
and the positive values at valleys (divided by Rxx (0), the resistivity at T = 1 K in the absence
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Figure 6. The longitudinal magnetoresistivity Rxx induced by remote impurity scattering at
different lattice temperatures T = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and 5.0 K for a GaAs-based
2DEG subjected to a HF field Es sin(ωt) of frequency ω/2π = 0.1 THz and amplitude
Es = 80 V cm−1. The system parameters are: electron density Ne = 3.0 × 1011 cm−2, dc
mobility µ0 = 2.4 × 107 cm2 V−1 s−1 at T = 1 K, and the broadening coefficient α = 12 for all
the curves. Also shown is the dark resistivity (Es = 0) at T = 5 K.

of the magnetic field) against 1/T on a logarithmic scale. If we roughly fit the data with the
form Rxx (T ) ∝ exp(−T0/T ), we have T0 ≈ 13 K for j = 2, T0 ≈ 9.5 K for j = 3, T0 ≈ 5 K
for j = 4 and T0 ≈ 3.3 K for j = 5 on average over the range shown.

The sensitivity of the temperature variation of the radiation-induced magnetoresistance
oscillation is sample dependent. In GaAs-based systems the electron–phonon scattering
strengths, thus the acoustic-phonon induced mobilities µ

(pt)
0 and µ

(pl)
0 , and their temperature

behaviour are essentially the same. Therefore, the temperature variation of the total
mobility µ0 depends mainly on the strength of the impurity scattering, which is almost
temperature independent within this range of T . The lowest curve in figure 5(a) shows
the T -dependence of the total mobility µ0(T ) for the sample having T = 1 K mobility
µ0(1 K) = 1.46 × 107 cm2 V−1 s−1, which apparently exhibits a slower temperature change
than that of the µ0(1 K) = 2.4 × 107 cm2 V−1 s−1 system.

In figure 7 we illustrate the linear resistivity Rxx induced by remote impurity scattering
as a function of ω/ωc at different lattice temperatures T = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0
and 6.0 K for the system of µ0(1 K) = 1.46 × 107 cm2 V−1 s−1 under a fixed microwave
irradiation of frequency ω/2π = 0.1 THz and amplitude Es = 45 V cm−1. The broadening
parameter is fixed to be α = 7.3 for all the lattice temperatures. The speed of the oscillatory
structure disappearing with rising temperature is apparently slower than the system shown in
figure 6.

6. Conclusion

Based on the balance-equation model for magnetotransport in Faraday geometry, we
have carried out a detailed theoretical investigation on microwave-radiation induced
magnetoresistance oscillations recently discovered in high-mobility GaAs-based two-
dimensional electron systems. We find that for systems having zero-field linear mobility
µ0(1 K) � 2.4 × 107 cm2 V−1 s−1, multiphoton-assisted impurity scatterings are the main
mechanisms responsible for radiation-induced magnetoresistance oscillations at temperature
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Figure 7. The longitudinal magnetoresistivity Rxx induced by remote impurity scattering at
different lattice temperature T = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0 and 6.0 K for a GaAs-
based 2DEG subjected to a HF field Es sin(ωt) of frequency ω/2π = 0.1 THz and amplitude
Es = 45 V cm−1. The system parameters are: electron density Ne = 3.0 × 1011 cm−2, dc
mobility µ0(1 K) = 1.46 × 107 cm2 V−1 s−1, broadening coefficient α = 7.3 for all the curves.
Also shown is the dark resistivity (Es = 0) at T = 6 K.

T � 4 K. The amplitude of the Rxx oscillation grows roughly following the microwave power
under weak illumination, and following the microwave amplitude under medium illumination,
before it saturates and even decreases with a continuing increase of the microwave strength
under strong irradiation. It is shown that the strongest oscillations appear in the linear
longitudinal magnetoresistance and a finite dc current bias always suppresses the oscillation.
Different from the SdH oscillation which is easily suppressed by a few-degree rise of the
electron temperature, the radiation-induced magnetoresistance oscillations are quite insensitive
to the modest electron heating as long as the lattice temperature remains the same. Although
the magnetoresistivities directly stemming from photon-assisted transverse and longitudinal
acoustic phonon scatterings also exhibit pronounced oscillations under microwave irradiation,
they contribute only a small part of the total Rxx in the temperature range of T � 4 K.
Nevertheless, it is just this acoustic phonon scattering that gives rise to the sensitive lattice
temperature dependence of radiation-induced resistance oscillations right from T = 1 K. We
have shown that the growth of the Landau level broadening resulting from the enhancement
of acoustic phonon scatterings with increasing lattice temperature leads to the observed
temperature suppression of the oscillation.
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